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The model considered here is directed to the problem of evaluation of free energy changes in th~ 
course of the passage of a solute M from solvent A to the second solvent B. It is applied to de
tailed description of the energetics of the solute passage (M in contact with the AlB separating 
surface) for n-alkanes, n-aicohols and n-primary amines. The difference in the behaviour due to 
the different composition of M is evident (engulfing versus buoyancy processes). The further 
text regards the transfer free er.ergy change (A ~ water, B ~ p-xylene) for amines. A discussion 
of possible improvements of the model is presented also. 

We present in this paper a first attempt to model solvent interactions at the boundary 
of two immiscible liquids. The phenomena we consider, is the transfer of solute 
molecules between the two liquid phases, and, especially, the phenomena occurring 
during the close contact of the solute with the separation surface. 

For the reasons which shall become more evident from the following, the model 
considered here is rather simple. When a new model is being introduced, the most 
important point is a selection of an approach which enables future inclusions of new 
features and which gives, also at the initial and intermediate stages of elaboration, 
results of some interest. We hope that this general criterion is satisfied by the present 
contribution. 

The model considered here is based on our previous experiences on quantum
-mechanical description of molecular interactions - at the ab initio level - and 
represents a contribution of our group to filling the gap between studies on small 
molecular isolated systems and studies concerned with large bodies by far encompas
sing the molecular scale. Recently, Dr Zahradnik has strongly stressed the necessity 
of filIing-up this gap, starting from the molecular side of the problem 1. The choice 
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of this subject for a special issue in his honour, indicates, to our opinion, that ana
lyses done by Dr Zahradnik on the complex domain of investigations in molecular 
sciences are timely and appropriate nowadays, as well as they were in the past. 

THEORETICAL 

The model is composed of two immiscible liquids, characterized at this stage of elabo
ration by their static dielectric constants 81 and 8 2 (and by a set of other static pro
pertie<;, like molecular diameter, density, thermal expansivity) and separated by a well 
defined and static flat boundary surface. Within the liquid, there is a single molecule 
of solute M. 

Physical interactions accounted for by the model are the electrostatic interactions 
inside M, described in a time-independent formulation by the usual electrostatic 
hamiltonian in the Born-Oppenheimer approximation, supplemented by inter
actions with the solvents, formally represented by an interaction operator Vinl , 

acting on the particles of M. 

The physical model is then described by the following equation: 

(1) 

The operator Vinl is approximated by a classical electrostatic operator, which ac
counts only for cIasiccal interaction terms between M and an averaged description 
of the solvents. It will be designated further as V". The solution of Eq. (1), or better, 
of the corresponding equation where Vinl is replaced by V,,: 

(HO + V (M)) tp' - E'I1" M " M - M (2) 

gives information on the electrostatic interaction between M and solvent(s), with 
the inclusion of polarization effects on M due to the polarized solvent. V" is a gener
alization of the solvent reaction potential (in the common sense of this term) because 
V,,(M) ultimately depends on the solvent polarized charge contribution of M (while 
the interaction potential usually refers to the unpolarized solvent). 

The mathematical model is based on the formulation of the reaction potential 
operator in terms of apparent charge distributions defined at the boundaries between 
the portions of space filled with dielectrics at different 8. The principal source for 
0' is the surface of the cavity L: encircling M. This cavity is defined in terms of spheres 
centered on atoms of M (here we have used an unique sphere for each CH3 or CH2 

group) with radii close to the van der Waals values: the interior of the cavity has 
a dielectric constant eo = I. A secondary source for (J is the flat and infinite surface 
separating solvents I and 2. 
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At each point of the surface separating medium i from medium j, there will occurr 
an apparent charge distribution (/ ij' related to the differences in the polarization 
vector p in the two media, or in other words, to the normal component of the deriva
tive of the electrostatic potential which has as sources the charge distribution 
reM, r) of the solute (electrons and nuclei) and all the o'ij charge distributions 

(3) 

where VV(ri) is the gradient of the total electrostatic potential computed at ri, and 
nij is the normal vector to the ij surface at rio The algorithm we use to compute 
the apparent charge distribution, starting from the definition of the spatial position 
of the boundaries, and on the ei values (being the only external parameters used here) 
has been described in preceding papers, for the simpler case of homogeneous solu
tions2 ,3, as well as for the general case of different solvents4 ,5. 

It will be sufficient to recall that the solution of this nonlinear problem (the o'ij's 
depend on the final solution tp~ of Eq. (2)) is achieved by means of an iterative 
procedure which converges quickly, and relies on the definition of point charges 
qij,k(Sk) placed at the center of tesseras of area /':,.Sk on the boundary surfaces: 

(4) 

From this set of charges one can immediately derive an expression for V.,. in the 
term of one-electron operator for current use in quantum-mechanical computational 
packages. 

For the energy we use the following expression: 

G;J = E~' - ! Sr(M, r) VO'(M, r) dr, (5) 

where GM is a free energy, and corresponds to the work necessary to build up the 
polarized charge distribution of the solute, reM, r), starting from an unpolarized 
system of dielectrics in which the void cavities ~ were present. The expression (5) 
emphasizes the fact that in the present utilization, the energy E~' of the separate 
subsystem M is not the basic quantity. It may be designated as the electrostatic 
contribution to the free energy of the system. 

Other contributions to the free energy could be also computed (vide infra), but they 
are neglected here. The only contribution taken into account is the contribution 
originated from the formation of the cavity, Gcav , evaluated in the framework of the 
scaled particle theory (SPT) according to the prescriptions given by Pierotti6 with 
modifications due to the non spherical shape of the cavity. 
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As stated above, the calculation of G;J requires a definition of the cavity radii. 
These radii are empirical parameters which, according to our derivation of the 
model, should take into account the difference between semiclassical electrostatic 
calculations in discrete ( and finite) M + solvent molecular clusters and electro
static calculations with M within a continuous (in generally infinite) dielectrics. Our 
previous work on this subject has been mainly directed to aqueous solutions. In this 
case, the parallel examination of the decomposition of the interaction energy in 
hydration clusters of variable composition and geometry, the analysis of Monte 
Carlo results (both with M and with a void equivalent cavity as solute) and conti
nuous dielectric calculations with variable cavity radii, resulted in a conclusion 
that the use of van der Waals radii multiplied by a constant factor, j = 1'2, represents 
a reasonable compromise for all the neutral chemical group. Such a simple rule, not 
based on the actual charge distribution in the solute, has been considered as sufficient 
for comparison of hydration energies of different molecules. 

Currently, new attempts occurred to define more precisely cavity radii for the 
electrostatic energy based on intrinsic properties of atoms in the molecule 7 ,s. 

As our problem is being related to the evaluation of differences in free energies 
in two solvents, we have found it convenient to explore a different strategy. Starting 
from the first three members of the alkane family (CH4 , C2H6 , C3Hs), we have 
systematically varied the cavity radii in two versions (separate radii for C and H 
atoms, radii for CH3 and CH2 groups) in two separate solvents (water and benzene), 
following the differences in the free energies 

We have found very regular.behaviour and selected the following couple of correction 
factors for the van der Waals radii: j(water) = 1'2, j'(benzene) = 1'1, possessing 
transfer free energies for all the set of n-alkanes with moderate errors. 

Passing then to alcohols and primary amines, we have repeated these calculations 
for the cavity radii of the 0, N, and H atoms in CH30H and CH3NH2 using fixed 
the j and f' factors for CH3. The resulting correction factors are j(water) = 1'0, 
j'(benzene) = 1·2 for alcohols andj(water) = 0'95,f'(bellzene) = 1·05 for amines, 
with errors of the evaluation of the transfer free energy of the same order as above. 
The set of cavity radii defined in this way has been employed for all the solutes 
examined so far. 

The cavitation energy has been computed using volumes and areas related to the 
same correction factors. When M is partially immersed in the two solvents, as in 
Fig. 1, Gcav has been computed as a sum of two components, each related to the 
volume of liquid displaced in the pertinent phase. 
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CALCULATIONS AND RESULTS 

The model described in the preceding section has been applied to a set of n-alkanes, 
n-alcohols and n-primary amines, ranging in complexity from CH3 X to C6H13X 
(X = H, OH, NH2). In all cases the solute M has been kept in its fully extended 
conformation, with standard internal geometric parameters9. The solute has been 
put in contact with the surface separating the two liquids with the main axis per
pendicular to this surface. Only vertical motions of M have been examined with 
the polar head of the solute, when present, pointing towards the aqueous phase. 
See Fig. 1 for a pictorial view. 

The results reported here have been obtained on a GOULD 32/8205 using a sui
tably implemented version of GAUSSIAN 70 and refer to the STO-4G basis set. 
The free energy is plotted versus .rw , a parameter for the percentage of the M surface 
in water. We prefer the use of this parameter over a distance showing the position 
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FIG. 1 

A schematic representation of our material 
model. The solute represented by an ovoid, 
at three different positions. P is the polar 
head (when present) 
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FIG. 2 

Plot of the changes in AGel with respect to 
Ew, i.e. the % of the molecular surface 
in the water phase for n-alkanes. Energies 
in kJ/mo\. 1 CH4 ; 2 C 2 H6 ; 3 C3HS; 4 
C4 H IO ; 5 C6 HI4 
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of M with respect to the phase separation surface. The surface has been evaluated 
using van der Waals radii with f = 1·0. The s:mple algorithm used to compute the 
surface and volume of a cavity of general shape has been shown in a preceding paper! o. 

The results for alkanes show that for any solute occurs a clear tendency to pass 
into the benzene phase (engulfing process): this propensity increases with the length 
of the hydrocarbon chain (see Fig. 2). 

On the other hand, for alcohols and amines, there exists an equilibrium position 
in which the buoyancy is determined by compensation of two opposite factors, the 
tendency of the aliphatic chain to stay in the benzene phase, and the tendency of the 
polar head to prefer the aqueous phase, a larger propensity for the hydration of 
NHl in comparison with OH being evident (e.g. from the comparison of the slope 
of the corresponding CnH 2n + IX curves near the 0% surface in water - see Figs 3 
and 4). 

Analysis of even such a limited set of results leads to interresting results which 
can be guessed by the reader himself. We prefer to delay this analysis until more 
numerical results will be available. In the following section, we shall discuss some 
problems related to the model, enlightening its limitations and the possible ameliora
tions. 

FIG. 3 

As Fig. 2 for n-alcohols. 1 CH30H; 2 
C2 HsOH; 3 C3H 7 0H; 4 C4 H9 0H; 5 
C6 H 13 0H 
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FIG. 4 

As Fig. 2 for n-primary amines. 1 CH3NH2 ; 

2 C 2 HsNH2 ; 3 C3H 7NH2 ; 4 C4 H9 NH2; 

5 C6H13NH2 
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DISCUSSION 

As said formerly, the model has been kept purposely simple and many conceivable 
features have not been introduced. We shall discuss some of them, without effort 
of giving an order of importance. 

Eq. (2) used in the calculations retains only electrostatic contributions. An im
portant term missing here is related to dispersion contributions. Calculation of these 
contributions to the solvation energy is most precise, when perturbation theory 
techniques are used. The approach currently employed, adopting an approximate 
solvation cluster model and computing dispersion contributions as additive two
-body terms, is unsatisfactory in several ways. Recently, we have developed a method 
in generalized form, for the solvent atoms11 based on semiempirical dispersion 
atom-atom coefficients and continuous distributions. The mathematical model 
uses, as for the electrostatic term, an integration on the cavity surface. The calcula
tion does not require much computer time and dispersion terms could be easily 
introduced in this way into the present model. Formulations expressing the solvent 
dispersion contributions in terms of solvent reaction field are, in addition, also pos
sible. An attempt in this direction has been done several years ago by B. Linderl2. 
This approach is at present under examination in the Bajadoz group. We have not 
yet introduced dispersion contributions to the present model because it is convenient 
to explore primarily the performance of the simpler version of the model. 

We should like to remark, that the strategy explained before for the determination 
of cavity radii has not been extended to other compounds in order to get an accurate 
numerical fitting. A pertinent question arises, if the rounded-off numerical factors f 
and!, are able to describe other transfer free energies. We report in Table I and Fig. 5 
some values concerning the water~ p-xylene AG tr for primary amines (regrettably, 
the experimental data are rather scarce and in some cases not well assesed yet). 

Taking into account the change of solvents, the performances of the model are 

TABLE I 

Comparison of calculated and experimental t 3 free energies of transfer from water to p-xylene 
for some primary amines (in kJ/mol) 

Amine Calculated Experiment 

CH3NHz 8·20 6·95 
CzH 5NHz 3·68 6·07 
C 3 H 7 NHz -0·04 2·55 
C4 H9 NHz -2·88 0·04 
C5H\\NHZ -5·15 -3-22 

C6 H\3 NHZ -7·36 -5·44 
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not too bad. It is worth mentioning that there exists a larger discrepancy for (CH3hN 
(calculated 11'38, experimental 20·5 kljmol) and a still noticeable discrepancy for 
(CH2hNH (calculated 9'16, experimental 4·7 kJjmol; the experimental values and 
those in Table I are taken from Jones and Arnett13). It seems that the present set 
of parameters, if of some use for linear amines, looses efficacy passing to secondary 
and to tertiary amines. 

For the estimation of solution free energy, as well as of transfer free energies, 
vibrational and translational contributions should be included also. The effect of 
these quantities on the solvation free energy AG~ are numerically important. Ac
cording to a simple model for the evaluation of the partition function of systems, 
the contributions neglected here are at least of the same order of magnitude as those 
considered here14• In addition, electrostatic contributions are heavily basis set 
dependent. However, the situation is not so bad as it appears, as non electrostatic 
contributions are less basis set dependent and it is possible to obtain reasonable 
estimates for AG~ also without large basis set. Using some results from our preceding 
unpublished calculations, we present in Fig. 6 some data for simple solutes in water, 
computed with different basis sets, taking into account all the contributions to the 
solvation free energy. The experimental trend, at least, is fairly well reproduced. 
There are no evident reasons to suppose that in different solvents different trend will 
occur, even though the scarcity of the results suggests the enlargements of calcula
tions to other cases. 

The ideal experiment considered in this paper introduces an interesting problem. 
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o 
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FIG. 5 

Comparison of computed and experimental 
free energies of transfer for water to p-xylene 
(see Table I), for n-primary amines: C1 

CH3 NH2; C2 C2HsNH2; C3 C3 H7 NH2; 
C4 C4 HgNH2 ; Cs CS Hll NH2 ; C6 

C6 H13NH2 • Energies in kJjmol 
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FIG. 6 

Comparison of soivation free energy in 
water at 298 K with inclusion of vibrational, 
librational and translational contributions, 
using different basis sets. A water; B 
methanol; C acetone; D acetaldehyde; E di
methylether. Energies in kJjmol 
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In dilute solutions, the solute molecule M is free of wandering over the entire volume. 
We now impose the condition that the solute must be in contact with the surface, 
reducing thus its wandering freedom. Generally, when M is near the surface, forces 
derived from the presence of the second phase will reduce this kind of freedom. The 
effect will be more evident when the separation surface bears an electrical charge 
or corresponds to a difference in the electrostatic potential. However, it occurs 
generally, with consequences which fade regularly when the solute increases its 
distance from the interface. 

In many statistical models for dilute solutions - as that we employed for the data 
in Fig. 5 - the translational freedom of M is reduced to the evaluation of the free 
volume VI available for local motions: This question has been thoroughly discussed 
in the literature1S - 17• A different approach, introduced by Ben Naim18 could be 
reconsidered for our problem: he introduced a "pseudo chemical potential" as the 
free energy required for the introduction of a single M molecule at some fixed point 
into the solution, and then a "liberation" free energy corresponding to the free 
energy change due to the release of this constriction. In normal solution, the libera
tion free energy is related to the entire volume V, while in the cases considered here, 
a different expression should be adopted. 

Rotational contributions at the interface give origin to similar, but not identical 
questions. More detailed models, related to a deeper knowledge of the benzene/ 
water interphase19 could give some information on these topics. 

A different problem arises for the solutes considered here, from the vibrational 
contribution. In this case also the part regarding conformational changes can be 
included. We have considered our molecules as rigid rods without a possibility of 
reaching bent conformations. The irreaIity of this assumption is evident from the 
computed trend of hydration energies for alcohols and amines which shows an 
increment for each CH2 group larger than that deduced from experimental data20• 

A simple correction based on the combinatorial calculations of accessible local 
minima in the conformation space brings this increment to reasonable values. 
The remaining problem is that of a better evaluation of the relative populations 
of different conformers for large solutes, or to devise at least a method for obtaining 
information on the differential conformational behaviour in waters and in oils. 

As stated at the beginning of this section, we shall not mention here all the problems 
left unanswered by the present model. The case considered here should be sufficient 
to show how the extension of methods and descriptions currently employed for 
isolated molecules or small clusters to large condensed systems brings up new pro
blems which require a substantial extension and modification of the methods em
ployed in the past. 

This work of revision, and of innovation, will be done in the next future, via a co
operative effort, since the ideas and suggestions of Rudolf Zahradnik will receive 
the attention they deserve. 
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